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Multicolor solitons due to four-wave mixing
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The structure and stability of different types of multicolor optical spatial solitary waves created by interac-
tion of light at a central frequency with two sideband waves both through cross-phase modulation and para-
metric four-wave mixing is presented. It is shown that a novel typareafe-color spatial solitorappears above
a power threshold when parametric coupling generates an instability of two-frequency solitary waves.
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Sky-rocketing network traffic and demand for greater datgparametric coupling between the field envelopes correspond-
throughout has made soliton-based fiber-optics systems theg to different carrier frequencies.
clear choice for por tions of the future communications in- Several novel applications may result from the FWM soli-
frastructurg[1]. To take full advantage of increases in trans-tons. First, in a crossbar switch based on the collision prop-
mission rates it will be necessary to develop equally faserties of spatial solitons, it may be possible to use the FWM
all-optical switching devices suitable for wavelength- interaction to provide parametric amplification in one of the
division multiplexing (WDM) systems. One proposed class frequency components. Second, there have also been a num-
of such devices is based on the reconfigurable multiport soliPer of suggestions for logic devices based on soliton
ton crossbar switch operating with multifrequency spatial op<ollision-induced phase shiff8]. These devices can be re-
tical solitons: Solitons at one frequency act as steerabl@lized by employing the collisional shifts in the frequency
waveguides for data transmissions at other frequencies. ~composition of FWM spatial solitons. Finally, in a temporal

In Kerr (cubic or X®) media, two-componenfor two-  Soliton context, multifrequency pulses similar to those de-
colon solitons have been investigated under the primary asScribed here may be produced by using a parametric soliton
sumption that four-wave mixingFWM) is neglected, in the 1aser with a dispersion-shifted fibgg]. _
context of pulse propagation in optical fibers and beam We startour analysis b_y_con3|der|ng the _spatlal a_nalog of
propagation in slab waveguidésee, e.g., Ref§2,3]). How- the standard fo.ur—wave mixing process and mtroducmg. three
ever, the third-order nonlinear susceptibility that supportsenvelope functions;(x,z), wherej=a,b,c for an electric
solitary waves in Kerr media can lead simultaneousiyb- field,
ject to phase-matching conditionso a FWM process in s ot ——im
{/vhich tvSo photons in agcentral frequency field Fa)lre converted  EZD=Eo{dat dpe ™+ pee e "+, (D)

into one photon in e_ach of two S|d_eband f|eldf_nd VIC® * \where c.c. stands for the complex conjugate valdesis the
versa [4]. Some special sech-like solitary waves in the pres-

ence of FWM have been already found by direct substitutiorf'vl\;j Oe—sbiggt_ibgﬁg ”ﬁggﬁesnhggssgr??;&i :;?sn(t;ajlt farigue;\r(]:g ane
[4—6]. However, general families of multicolor solitary in _ sw), respectively. These different frequenC); compo-
the presence of FWM interaction have not been investigateéznts of "[he field intera'ct due to the cukiz X ) nonlinear

yet. In this paper, we analyze, for the first time to our knowl-res onse of the Kerr-type optical medium. It is assumed that
edge, different types of solitary waves in the problem of P pe op )

degenerate FWM interaction considering the case of spatiéhe phase matching conditions are satisfied for the main fre-

selftrapping n a siab waveguide. In paricular, we show thafg 200 808 8 SRR LR B e e
above a certain power threshold the FWM interaction lead q

to an instability of two color solitonsind, instead, there ap- gﬁgggﬁ?gnjeﬁéncgohrﬁreor:earllrt]g’Cilrlers;ogee’ ?:;(;Iatlgzbii?ut
pears a novel type of stable stationary localized watreege- 9 y P g '

color optical solitons in which parametric wave mixing is ing Eq. (1) into the nonlinear scalar wave equation yields a

exactly balanced by the nonlinear effect of self- and crossSe! ©f three coupled nonlinegelmholtz-type equations:
V2ot Badat val balldal >+ 2] pol*+2| bel?)

phase modulation. This resembles the self-trapping mecha-
nism by which solitary waves are possible due solely to para-

metric wave coupling in a quadratic nonlinear medilifh +2¢% ppb]=0,
and therefore the multicolor solitons described in this paper

can be regarded as a unique class of three-wave parametriovzq,)bjLﬁtz)d)bJr Yol D6(2] bal 2+ | bp|2+ 2| el ?) + p2* ]
solitary waves supported by a combined action of self- 2 ¢ are

induced modulation, cross-phase modulation, and FWM =0, 2
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V2he+ Bibet vl de(2] bal?+ 2|yl 2+ | el + p2E1=0,

whereyjzﬁjznzj/nj for j=a,b,c; ny,, n,,, andn,, are the
nonlinear susceptibilitiesy,, n,, andn. are the linear re-
fractive indices; ang3,, By, and g, for linear propagation
constants. The field labeled by the subscript'‘is the beam
with the central frequencw, whereas the other two fields,
the beams b” and “ c¢”, are characterized by the sideband
frequencies ¢ + dw) and (w— dw), respectively. All fields
are normalized by the strength of the nonlinearity. The las
term in each of these equations describes phase-match
parametric FWM interaction between the fields. -10 0 10 -10 o 10
Neglecting the parametric FWM interaction is usually jus-
tified by the argument that the dispersion leads to rapid os- FIG. 1. Profiles of stationary solutior(§) for Q=1.4, andR
cillations in the phase mismatd&]. Indeed, for small non- =0.1605. Field amplitude and position variables are normalized
linear phase modulations in the fields, the FWM term of eacHdimensionlessas defined in the texta Two-color soliton. (b)
field experiences a phase rotatie'2? relative to the field Three-color soliton with the zero absolute phase mismatcspli-

where the linear propagation mismatch is defined Aas ton. (c), ((_j) Two examples of thrge-color solitons withmaabsolute
=2B.— Bo— Be. phase mismatchy— and 7+ solitons.

This argument is no longer valid for small valuesfobr
for powers sufficient to produce a nonlinearity-induced changel-212, Bc=0.891, v,=1.0, y,=1.2242, y.=0.88209.
in the refractive index comparable to the linear mismatch. Inlhese linear propagation constants result in a large propaga-
such a case, the nonlinear phase modulation provides shiff®n mismatch of—0.103.
in the propagation constants that are sufficient to exactly One-color solitary wavesre precisely the well-known
balance the linear phase mismatch making the phases of ti§€ch-type solutions of the cubic nonlinear Sciinger
FWM terms stationary relative to the fields. To find these(NLS) equation. They can be immediately obtained from
self-trapped stationary states, we look for solutions of theéEds. (2) assuming that only one fieldp,, ¢y, or ¢, is

nonlinear Helmholtz equation®) in the standard form nonzero whereas two others vanish. Unlike these one-color
localized waves, multicolor solitary waves appear as mutu-
ba(x,2)=U(x)€kaZt ba), ally coupled states of two or three different frequencies. Fig-

ure 1 illustrates some examples of two- and three-color sta-
tionary states foQ=1.4 andR=0.1605.

— i(kpz+ 6
$o(x,2) =V(x)e et ), ©) Two-color solitary wavesan exist as stationary localized
. solutions only when the field component with the central
Pe(x,2) = W(x)e' ke Pe), frequencyw exactly vanishesi.e., when¢,=0). Then, the
FWM coupling in the polarization vanishes as well so that no
whereU, V, andW are the real amplitudes of the fields,,  additional frequencies are generated. The similar kind of

0y, andé, are absolutéinitial) phases of the fields; and a set two-frequency solitons, mutually coupled only due to the
of effectivepropagation constanks, , k,, andk, is produced cross-phase incoherent interaction, have been discussed in
by nonlinear self- and cross-phase modulation. previous workgsee, €e.g.[2,3]) and one of the examples is
Stationary wave propagation can be achieved providedllustrated in Fig. 1a).
both the effective propagation constants and the absolute Three-color solitary wavesnclude the effect of FWM
phases are matched. The corresponding phase-matching caoupling and therefore the phase-matched parametric inter-
dition for the effective propagation constantsk,Zk,  action between the frequencies become important. In an ear-
+Kk., describes a surface in the space of the three effectivier paper[5], this type of solution was found by a direct
propagation constants that may be parametrized as followsubstitution of the familiar sech-type profiles deriving a set
k.,=Q, kp=Q+R, andk.=Q—R. It should also be noticed of conditions for other parameters. Such exact analytical so-
that the absolute phase mismatch defined\@s-26,— 6, Iutions allow one to describe only very special localized
— 6, can only be 0 orr for coupled multifrequency station- modes and sometimes they give incomplete or even wrong
ary waves, because all other absolute phase mismatches legsults. As an example, we mention the recent work by Sam-
to a complex valued polarization in the nonlinear Helmholtzmut et al. [11] where it was found, in particular, that the
equations. sech-type solutions earlier obtained for the problem of the
A set of coupled ordinary differential equations resultsthird-harmonic generatioff] correspond to degenerate ab-
from substituting Eqs(3) into Eqgs.(2). Stationary field pro- solutely unstable multihump solitary waves. Therefore, these
files can then be found numerically at any fixed choice of theexact solutions may not provide useful information about
parameters) andR (see Ref[10]) with appropriate bound- self-trapping of the fundamental beams due to FWM inter-
ary conditions: namely, for bright solitary waves we analyzeaction.
in this paper,¢; and d¢;/d, should vanish at a distance  To describe the complete families of the localized solu-
sufficiently far from the soliton center so that errors are negtions for the FWM-coupled solitary waves, we solve the sys-
ligible. For the examples presented in this paper, the followtem of three coupled equations for the real functibh),
ing parameters were chosedw/w=0.01, 8,=1.0, B, V(X), andW(x). Bright solitons with vanishing asymptotics
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at infinity correspond to separatrix solutions homoclinic toillustrated in Fig. 1b). In this stationary state the total abso-

zero. We find such solutions numerically for valuespand  lute phase mismatch is zer8¢=0. To distinguish this third

R. As a result, we reveal that three-color solitary waves carsoliton from thew+ and 7— solitons we will refer to this

exist of three distinct types, and they can be classified by tweype as as soliton.

possible absolute phase mismatches. Wave profiles illus- Because the two- and three-color solitary waves are char-

trated in Figs. {c) and Xd) correspond to the case where the acterized by two independent paramet@randR, their sta-

absolute phase mismata¥ is equal tow (this is indicated pjity is not a trivial issue. Analysis of the stability of multi-

in the figures by showing negative field amplitule$ the  5ameter solitary waves has begun only recefsibe, e.g.,

linear and nonlinear susceptibilities for the two S|debandT12 13), and many issues still remain to be understood. Here

were identical for the wo sidebands then there_ would b? Sve demonstrate the stability of solitons employing the ap-

symmetry corresponding to exchange of the sideband fiel roach based on catastrophe the@ge, e.g., Ref14] for a

profiles. Parametnc_ Interaction destroys this symmetry an eneral review This approach has beén re(,:ently generalized

accounts for the slight difference between the two sets o o0 a three-wave mixing interaction where solitary wave fami

field profiles. In the soliton shown in Fig(d the amplitude . e - = i
P 9(d@ b Illes are described by two-parameter invariant surfadé&%

the soliton shown in Fig. ). We shall use the following and involves the analysis of the system Hamiltonian as a

naming scheme for stationary waves with-absolute phase function of two E}dditional ponserved guantities resulting
mismatch: if more power is in the, field than in theg, ~ TOM the symmetries according to Noether's theorem.

field we call this state ar+ solitons, but if the sideband _ First, we define the conserved quantities of our model.
field powers have the opposite ordering then we callita  The system Hamiltonian results from translational invariance
soliton. The third type of the three-color solitary wave is Of Egs.(2) along the propagation directian

L3

= 18P 2 1 aP1d* - 5 1)1~ (62 dudet didf 60) jdx (4

Y j#k

J
ox @i

2
')’Jl jl Y,

where ;= — yj’l(a/az)g{:j are the canonical field momenta that this new Hamiltonian is given bj=H+ QP+ RS This

andj=a,b,c. rotating-frame Hamiltonian can also be viewed as a
There also exist two internal symmetries that lead to conLyapunov function in whichQ and R play the role of

served quantities. An equal variation in the absolute phasdsagrange multiplierd15] (see also Refd.13,14 for other

of all three fields leaves the set of nonlinear Helmholtz equa€xa@mples The stationary solutions then correspond to ex-

tions unchanged. This symmetry generates the conservatidfgma or saddle points of this Lyapunov functiofj=0.

of total power The total power is simply the sum of the Stable solutions are global extrema of the Lyapunov function

partial powers calculated for each of the fields=3 P, for which growth of any perturbation violates conservation
whereP, =i [*_{¢* m —c.cldx for j=a,b,c "1 Jaws. If the Hamiltonian is bounded from below, then it fol-
j —e L @) T A

Because parametric coupling due to the FWM effect al_lows_that_ the stationary solut_ion with th_e lowest value of
lows coherent interaction and energy transfer between th|é|amllt(_)n|an for a constant pair o andIS |s_stable.
fields, the powers of each individual field are not conserved In.Flg. 2, we illustrate several Ham|lton|an'surfaces as a
However, a second conserved power results from the invarfunction of the poweiP and skew powes as viewed from
ance of the Hamiltonian when the phases of the two sidebang — — - For low powers, the two-color sol'ut'|ons indicated
fields are varied in the opposite directions. This symmetry?Y the labelBC are stable. For powers sufficient to balance
leads to the conservation of the so-callgkew power S the phase mismatch with nonlinear phase modulation, the
= Pb_ PC .

The conservation of these two power invariants has a
simple physical meaning based on an analogy with quantum
optics. Indeed, every photon taken out of the central fre-
guency field must correspond to a photon added to each of
the sidebandgandvice versa. This type of parametric cou- P
pling permits only a constant photon number difference be-
tween the two sidebands. Thus the power in the two side-
bands is expected to change in tandem over any propagation
distance. Accompanying these power changes in the side-
bands, a compensating variation in the central frequency
power leads to a constant net power.

To analyze the solution stability we use a Hamiltonian in
a rotating frame so that the transverse profiles are stationary FIG. 2. Schematic of normalized Hamiltonian surfaces for sta-
solutions. From the canonical equations it is easy to showionary waves as a function & andS viewed fromH— — .
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FIG. 4. Collision between & soliton and a one-color soliton in
FIG. 3. Power surfaces for stationary waves as a function othe upshifted sideband: Intensitidg;|?>, where j=a,b,c, are
normalized variable® andR. The near cross section of the sur- shown in(a), (b), and(c), respectively. Field amplitude and position
faces correspond t@=1.4 and the parameters are the same as irvariables are normalized as defined in the text.
Fig. 1.

threshold were all found to be unstable. These results are in
full agreement with the analysis of the invariant surfaces, as
we described above. We tested each stationary wave type for

three-coloro solitons exist as a lower branch from a bifur-
cation of the two-color solutions. At powers above this bi-

furcation curve, ther solitons are stable whereas the two-,g1e parameter®=1.4 andR=0.1605 by running a numeri-

color solitons become unstable. The two one-color Side!bancal beam propagation from a perturbed initial condition over
waves are illustrated as lines and are labé&8eghdC. These . propag P . .
stances as great as 1500 normalized length @bith am-

one-parameter solutions are always stable and satisfy one gr ; I
the conditionsP=S or P=—S. Near the top of Fig. 2, the plitude and phase perturbat|or_15 were appliethis corre-
two-color ando soliton surfaces are cut away, revealing theSPONds to about 24 full cycles in the linear phase mismatch.
 soliton surfaces and the central frequency one-color lind/V€ @/s0 monitored the conserved total and skew powers dur-
labeledA. These three-colorr+ andm— waves are always "9 the simulations to assure that the step sizes were selected
unstable. The twer solutions approach the one-color central correctly.
frequency wave for low skew powers. To confirm further the Stablllty of the FWM solitons and
Because coupling between waves with identical propagadbserve their robustness under large-amplitude perturbations,
tion constants leads to radiation and a reduction in the poweke numerically investigated collisions between the solitary
integral, it is useful to see how the powers of different typeswaves of different types. As an example, in Fig. 4 we present
of waves relate as a function @f andR. Power surfaces for intensities of the frequency components of the solitons for a
the seven solution types are illustrated in Fig. 3. Acollision between a three-colas soliton and a one-color
“shadow” of the stable power surfaces is shown in the up-shifted sideband soliton corresponding to the parameters
=0 plane, where bifurcation between the two-color and used in Fig. 1. The localized wave launched from the left had
solitons occurs along the line separating the two shaded rehe initial field profile shown in Fig. (b) and the wave
gions. In this diagram, the one-color solutions appear as sutaunched from the right was a one-color soliton in the upper
faces because each solution profile maps to a line. For exsideband. The initial field profiles were chosen so that there
ample, the central frequency surface is independef®.dt ~ was about 120 degrees phase difference between the two
should be noted that because the skew-power and Hamisolitons. In spite of the fact that the model is not integrable,
tonian information is missing in this diagram, most of thethe solitary waves collide in a billiard-ball fashion preserving
intersections between power surfaces do not correspond tbeir identities.
bifurcations. Bifurcations correspond only to lines where so- In conclusion, we have described, for the first time to our
lution surfaces begin or end. knowledge, different families of multicolor bright spatial op-
General properties and stability of all types of bright mul- tical solitary waves in the problem of degenerate four-wave-
ticolor solitons can be confirmed by beam propagation, numixing interaction. Bifurcations of invariant surfaces for the
merically integrating the nonlinear coupled equatié®sin  two-parameter FWM solitons as well as the stability proper-
the paraxial approximation, when the system is reduced tties of one-, two-, and three-color solitary waves reveal that
three NLS-type equations coupled through cross-phasevo-color solitons become unstable above a certain power
modulation and FWM interactions. Such an approximation ighreshold and only three-color FWM solitons with zero ab-
well known and it is based on the fact that all envelopesolute phase mismatch are stable. These three-color solitons
functions vary slowly along the propagation directinnin present a novel class of mutually coupled stationary states
numerical simulations, we have found that one-color sidefor which the FWM interaction is exactly balanced by non-
band solitons, two-color solitortselowthe power threshold, linear phase modulation. Below the power threshold, two-
and three-colowr solitons are all stable. However, the one- color waves with no parametric coupling through FWM in-
color central frequency stationary soliton, the three-cetor teraction are stable. One-color solitons in the sideband
solitons, and the two-color solitorbovethe o wave power frequencies are stable, but one-color waves in the central
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