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Multicolor solitons due to four-wave mixing
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The structure and stability of different types of multicolor optical spatial solitary waves created by interac-
tion of light at a central frequency with two sideband waves both through cross-phase modulation and para-
metric four-wave mixing is presented. It is shown that a novel type ofthree-color spatial solitonappears above
a power threshold when parametric coupling generates an instability of two-frequency solitary waves.
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Sky-rocketing network traffic and demand for greater d
throughout has made soliton-based fiber-optics systems
clear choice for por tions of the future communications
frastructure@1#. To take full advantage of increases in tran
mission rates it will be necessary to develop equally f
all-optical switching devices suitable for wavelengt
division multiplexing ~WDM! systems. One proposed cla
of such devices is based on the reconfigurable multiport s
ton crossbar switch operating with multifrequency spatial
tical solitons: Solitons at one frequency act as steera
waveguides for data transmissions at other frequencies.

In Kerr ~cubic or X (3)) media, two-component~or two-
color! solitons have been investigated under the primary
sumption that four-wave mixing~FWM! is neglected, in the
context of pulse propagation in optical fibers and be
propagation in slab waveguides~see, e.g., Refs.@2,3#!. How-
ever, the third-order nonlinear susceptibility that suppo
solitary waves in Kerr media can lead simultaneously~sub-
ject to phase-matching conditions! to a FWM process in
which two photons in a central frequency field are conver
into one photon in each of two sideband fields~and vice
versa! @4#. Some special sech-like solitary waves in the pr
ence of FWM have been already found by direct substitut
@4–6#. However, general families of multicolor solitary i
the presence of FWM interaction have not been investiga
yet. In this paper, we analyze, for the first time to our know
edge, different types of solitary waves in the problem
degenerate FWM interaction considering the case of sp
self-trapping in a slab waveguide. In particular, we show t
above a certain power threshold the FWM interaction le
to an instability of two color solitonsand, instead, there ap
pears a novel type of stable stationary localized waves,three-
color optical solitons, in which parametric wave mixing is
exactly balanced by the nonlinear effect of self- and cro
phase modulation. This resembles the self-trapping me
nism by which solitary waves are possible due solely to pa
metric wave coupling in a quadratic nonlinear medium@7#,
and therefore the multicolor solitons described in this pa
can be regarded as a unique class of three-wave param
solitary waves supported by a combined action of s
induced modulation, cross-phase modulation, and FW
571063-651X/98/57~3!/3551~5!/$15.00
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parametric coupling between the field envelopes correspo
ing to different carrier frequencies.

Several novel applications may result from the FWM so
tons. First, in a crossbar switch based on the collision pr
erties of spatial solitons, it may be possible to use the FW
interaction to provide parametric amplification in one of t
frequency components. Second, there have also been a
ber of suggestions for logic devices based on soli
collision-induced phase shifts@8#. These devices can be re
alized by employing the collisional shifts in the frequen
composition of FWM spatial solitons. Finally, in a tempor
soliton context, multifrequency pulses similar to those d
scribed here may be produced by using a parametric so
laser with a dispersion-shifted fiber@9#.

We start our analysis by considering the spatial analog
the standard four-wave mixing process and introducing th
envelope functionsf j (x,z), where j 5a,b,c for an electric
field,

E~x,z;t !5E0$fa1fbe2 idvt1fce
idvt%e2 ivt1c.c., ~1!

where c.c. stands for the complex conjugate values,dv is the
side-band frequency shift, so that the central frequency
two side-band frequencies are taken asv, (v1dv), and
(v2dv), respectively. These different frequency comp
nents of the field interact due to the cubic~or X (3)! nonlinear
response of the Kerr-type optical medium. It is assumed
the phase matching conditions are satisfied for the main
quency and the side-band frequencies only, whereas the
teraction of these three waves of other frequencies and t
combinations is incoherent and, therefore, generation of
ditional frequency components can be neglected. Subst
ing Eq. ~1! into the nonlinear scalar wave equation yields
set of three coupled nonlinear~Helmholtz-type! equations:

¹2fa1ba
2fa1ga@fa~ ufau212ufbu212ufcu2!

12fa* fbfc#50,

¹2fb1bb
2fb1gb@fb~2ufau21ufbu212ufcu2!1fa

2fc* #

50, ~2!
3551 © 1998 The American Physical Society
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¹2fc1bc
2fc1gc@fc~2ufau212ufbu21ufcu2!1fa

2fb* #50,

whereg j5b j
2n2 j /nj for j 5a,b,c; n2a , n2a , andn2c are the

nonlinear susceptibilities;na , nb , andnc are the linear re-
fractive indices; andba , bb , andbc for linear propagation
constants. The field labeled by the subscript ‘‘a’’ is the beam
with the central frequencyv, whereas the other two fields
the beams ‘‘b’’ and ‘‘ c’’, are characterized by the sideban
frequencies (v1dv) and (v2dv), respectively. All fields
are normalized by the strength of the nonlinearity. The l
term in each of these equations describes phase-mat
parametric FWM interaction between the fields.

Neglecting the parametric FWM interaction is usually ju
tified by the argument that the dispersion leads to rapid
cillations in the phase mismatch@2#. Indeed, for small non-
linear phase modulations in the fields, the FWM term of ea
field experiences a phase rotatione6 iDz relative to the field
where the linear propagation mismatch is defined asD
52ba2bb2bc .

This argument is no longer valid for small values ofD or
for powers sufficient to produce a nonlinearity-induced ch
in the refractive index comparable to the linear mismatch
such a case, the nonlinear phase modulation provides s
in the propagation constants that are sufficient to exa
balance the linear phase mismatch making the phases o
FWM terms stationary relative to the fields. To find the
self-trapped stationary states, we look for solutions of
nonlinear Helmholtz equations~2! in the standard form

fa~x,z!5U~x!ei ~kaz1ua!,

fb~x,z!5V~x!ei ~kbz1ub!, ~3!

fc~x,z!5W~x!ei ~kcz1uc!,

whereU, V, andW are the real amplitudes of the fields;ua ,
ub , anduc are absolute~initial! phases of the fields; and a s
of effectivepropagation constantska , kb , andkc is produced
by nonlinear self- and cross-phase modulation.

Stationary wave propagation can be achieved provi
both the effective propagation constants and the abso
phases are matched. The corresponding phase-matching
dition for the effective propagation constants, 2ka5kb
1kc , describes a surface in the space of the three effec
propagation constants that may be parametrized as follo
ka5Q, kb5Q1R, andkc5Q2R. It should also be noticed
that the absolute phase mismatch defined asDu52ua2ub
2uc can only be 0 orp for coupled multifrequency station
ary waves, because all other absolute phase mismatches
to a complex valued polarization in the nonlinear Helmho
equations.

A set of coupled ordinary differential equations resu
from substituting Eqs.~3! into Eqs.~2!. Stationary field pro-
files can then be found numerically at any fixed choice of
parametersQ andR ~see Ref.@10#! with appropriate bound-
ary conditions: namely, for bright solitary waves we analy
in this paper,f i and ]f i /]x should vanish at a distanc
sufficiently far from the soliton center so that errors are n
ligible. For the examples presented in this paper, the follo
ing parameters were chosen:dv/v50.01, ba51.0, bb
t
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51.212, bc50.891, ga51.0, gb51.2242, gc50.88209.
These linear propagation constants result in a large prop
tion mismatch of20.103.

One-color solitary wavesare precisely the well-known
sech-type solutions of the cubic nonlinear Schro¨dinger
~NLS! equation. They can be immediately obtained fro
Eqs. ~2! assuming that only one field,fa , fb , or fc , is
nonzero whereas two others vanish. Unlike these one-c
localized waves, multicolor solitary waves appear as mu
ally coupled states of two or three different frequencies. F
ure 1 illustrates some examples of two- and three-color
tionary states forQ51.4 andR50.1605.

Two-color solitary wavescan exist as stationary localize
solutions only when the field component with the cent
frequencyv exactly vanishes~i.e., whenfa50!. Then, the
FWM coupling in the polarization vanishes as well so that
additional frequencies are generated. The similar kind
two-frequency solitons, mutually coupled only due to t
cross-phase incoherent interaction, have been discusse
previous works~see, e.g.,@2,3#! and one of the examples i
illustrated in Fig. 1~a!.

Three-color solitary wavesinclude the effect of FWM
coupling and therefore the phase-matched parametric in
action between the frequencies become important. In an
lier paper@5#, this type of solution was found by a direc
substitution of the familiar sech-type profiles deriving a s
of conditions for other parameters. Such exact analytical
lutions allow one to describe only very special localiz
modes and sometimes they give incomplete or even wr
results. As an example, we mention the recent work by S
mut et al. @11# where it was found, in particular, that th
sech-type solutions earlier obtained for the problem of
third-harmonic generation@5# correspond to degenerate a
solutely unstable multihump solitary waves. Therefore, th
exact solutions may not provide useful information abo
self-trapping of the fundamental beams due to FWM int
action.

To describe the complete families of the localized so
tions for the FWM-coupled solitary waves, we solve the s
tem of three coupled equations for the real functionsU(x),
V(x), andW(x). Bright solitons with vanishing asymptotic

FIG. 1. Profiles of stationary solutions~3! for Q51.4, andR
50.1605. Field amplitude and position variables are normali
~dimensionless! as defined in the text.~a! Two-color soliton.~b!
Three-color soliton with the zero absolute phase mismatch,s soli-
ton. ~c!, ~d! Two examples of three-color solitons with ap absolute
phase mismatch,p2 andp1 solitons.
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57 3553MULTICOLOR SOLITONS DUE TO FOUR-WAVE MIXING
at infinity correspond to separatrix solutions homoclinic
zero. We find such solutions numerically for values ofQ and
R. As a result, we reveal that three-color solitary waves
exist of three distinct types, and they can be classified by
possible absolute phase mismatches. Wave profiles i
trated in Figs. 1~c! and 1~d! correspond to the case where t
absolute phase mismatchDu is equal top ~this is indicated
in the figures by showing negative field amplitudes!. If the
linear and nonlinear susceptibilities for the two sideban
were identical for the two sidebands then there would b
symmetry corresponding to exchange of the sideband fi
profiles. Parametric interaction destroys this symmetry
accounts for the slight difference between the two sets
field profiles. In the soliton shown in Fig. 1~c! the amplitude
of the central frequency beam is slightly larger than that
the soliton shown in Fig. 1~d!. We shall use the following
naming scheme for stationary waves with ap absolute phase
mismatch: if more power is in thefb field than in thefc
field we call this state ap1 solitons, but if the sideband
field powers have the opposite ordering then we call it ap2
soliton. The third type of the three-color solitary wave
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illustrated in Fig. 1~b!. In this stationary state the total abs
lute phase mismatch is zero,du50. To distinguish this third
soliton from thep1 and p2 solitons we will refer to this
type as as soliton.

Because the two- and three-color solitary waves are c
acterized by two independent parametersQ andR, their sta-
bility is not a trivial issue. Analysis of the stability of multi
parameter solitary waves has begun only recently~see, e.g.,
@12,13#!, and many issues still remain to be understood. H
we demonstrate the stability ofs solitons employing the ap
proach based on catastrophe theory~see, e.g., Ref.@14# for a
general review!. This approach has been recently generaliz
to a three-wave mixing interaction where solitary wave fam
lies are described by two-parameter invariant surfaces@13#,
and involves the analysis of the system Hamiltonian a
function of two additional conserved quantities resulti
from the symmetries according to Noether’s theorem.

First, we define the conserved quantities of our mod
The system Hamiltonian results from translational invarian
of Eqs.~2! along the propagation directionz,
H5E
2`

` H(
j

F2g j up j u21
1

g j
U ]

]x
f jU2

2
b j

2

g j
uf j u22(

j Þk
uf j u2ufku22

1

2
uf j u4G2~fa*

2fbfc1fa
2fb* fc* !J dx, ~4!
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wherep j52g j
21(]/]z)f j are the canonical field moment

and j 5a,b,c.
There also exist two internal symmetries that lead to c

served quantities. An equal variation in the absolute pha
of all three fields leaves the set of nonlinear Helmholtz eq
tions unchanged. This symmetry generates the conserva
of total power. The total power is simply the sum of th
partial powers calculated for each of the fields:P5S j Pj ,
wherePj5 i *2`

` $f j* p j2c.c.%dx, for j 5a,b,c.
Because parametric coupling due to the FWM effect

lows coherent interaction and energy transfer between
fields, the powers of each individual field are not conserv
However, a second conserved power results from the inv
ance of the Hamiltonian when the phases of the two sideb
fields are varied in the opposite directions. This symme
leads to the conservation of the so-calledskew power S
5Pb2Pc .

The conservation of these two power invariants ha
simple physical meaning based on an analogy with quan
optics. Indeed, every photon taken out of the central
quency field must correspond to a photon added to eac
the sidebands~andvice versa!. This type of parametric cou
pling permits only a constant photon number difference
tween the two sidebands. Thus the power in the two s
bands is expected to change in tandem over any propag
distance. Accompanying these power changes in the s
bands, a compensating variation in the central freque
power leads to a constant net power.

To analyze the solution stability we use a Hamiltonian
a rotating frame so that the transverse profiles are statio
solutions. From the canonical equations it is easy to sh
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that this new Hamiltonian is given byJ5H1QP1RS. This
rotating-frame Hamiltonian can also be viewed as
Lyapunov function in whichQ and R play the role of
Lagrange multipliers@15# ~see also Refs.@13,14# for other
examples!. The stationary solutions then correspond to e
trema or saddle points of this Lyapunov function:dJ50.
Stable solutions are global extrema of the Lyapunov funct
for which growth of any perturbation violates conservati
laws. If the Hamiltonian is bounded from below, then it fo
lows that the stationary solution with the lowest value
Hamiltonian for a constant pair ofP andS is stable.

In Fig. 2, we illustrate several Hamiltonian surfaces a
function of the powerP and skew powerS as viewed from
H→2`. For low powers, the two-color solutions indicate
by the labelBC are stable. For powers sufficient to balan
the phase mismatch with nonlinear phase modulation,

FIG. 2. Schematic of normalized Hamiltonian surfaces for s
tionary waves as a function ofP andS viewed fromH→2`.
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three-colors solitons exist as a lower branch from a bifu
cation of the two-color solutions. At powers above this
furcation curve, thes solitons are stable whereas the tw
color solitons become unstable. The two one-color sideb
waves are illustrated as lines and are labeledB andC. These
one-parameter solutions are always stable and satisfy on
the conditions,P5S or P52S. Near the top of Fig. 2, the
two-color ands soliton surfaces are cut away, revealing t
p soliton surfaces and the central frequency one-color
labeledA. These three-colorp1 andp2 waves are always
unstable. The twop solutions approach the one-color cent
frequency wave for low skew powers.

Because coupling between waves with identical propa
tion constants leads to radiation and a reduction in the po
integral, it is useful to see how the powers of different typ
of waves relate as a function ofQ andR. Power surfaces for
the seven solution types are illustrated in Fig. 3.
‘‘shadow’’ of the stable power surfaces is shown in theP
50 plane, where bifurcation between the two-color ands
solitons occurs along the line separating the two shaded
gions. In this diagram, the one-color solutions appear as
faces because each solution profile maps to a line. For
ample, the central frequency surface is independent ofR. It
should be noted that because the skew-power and Ha
tonian information is missing in this diagram, most of t
intersections between power surfaces do not correspon
bifurcations. Bifurcations correspond only to lines where
lution surfaces begin or end.

General properties and stability of all types of bright m
ticolor solitons can be confirmed by beam propagation,
merically integrating the nonlinear coupled equations~2! in
the paraxial approximation, when the system is reduced
three NLS-type equations coupled through cross-ph
modulation and FWM interactions. Such an approximation
well known and it is based on the fact that all envelo
functions vary slowly along the propagation directionz. In
numerical simulations, we have found that one-color si
band solitons, two-color solitonsbelow the power threshold
and three-colors solitons are all stable. However, the on
color central frequency stationary soliton, the three-colop
solitons, and the two-color solitonsabovethes wave power

FIG. 3. Power surfaces for stationary waves as a function
normalized variablesQ and R. The near cross section of the su
faces correspond toQ51.4 and the parameters are the same a
Fig. 1.
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threshold were all found to be unstable. These results ar
full agreement with the analysis of the invariant surfaces
we described above. We tested each stationary wave typ
the parametersQ51.4 andR50.1605 by running a numeri
cal beam propagation from a perturbed initial condition ov
distances as great as 1500 normalized length units~both am-
plitude and phase perturbations were applied!. This corre-
sponds to about 24 full cycles in the linear phase misma
We also monitored the conserved total and skew powers
ing the simulations to assure that the step sizes were sele
correctly.

To confirm further the stability of the FWM solitons an
observe their robustness under large-amplitude perturbati
we numerically investigated collisions between the solita
waves of different types. As an example, in Fig. 4 we pres
intensities of the frequency components of the solitons fo
collision between a three-colors soliton and a one-color
up-shifted sideband soliton corresponding to the parame
used in Fig. 1. The localized wave launched from the left h
the initial field profile shown in Fig. 1~b! and the wave
launched from the right was a one-color soliton in the up
sideband. The initial field profiles were chosen so that th
was about 120 degrees phase difference between the
solitons. In spite of the fact that the model is not integrab
the solitary waves collide in a billiard-ball fashion preservi
their identities.

In conclusion, we have described, for the first time to o
knowledge, different families of multicolor bright spatial op
tical solitary waves in the problem of degenerate four-wa
mixing interaction. Bifurcations of invariant surfaces for th
two-parameter FWM solitons as well as the stability prop
ties of one-, two-, and three-color solitary waves reveal t
two-color solitons become unstable above a certain po
threshold and only three-color FWM solitons with zero a
solute phase mismatch are stable. These three-color sol
present a novel class of mutually coupled stationary sta
for which the FWM interaction is exactly balanced by no
linear phase modulation. Below the power threshold, tw
color waves with no parametric coupling through FWM i
teraction are stable. One-color solitons in the sideba
frequencies are stable, but one-color waves in the cen

f

n

FIG. 4. Collision between as soliton and a one-color soliton in
the upshifted sideband: Intensitiesuf j u2, where j 5a,b,c, are
shown in~a!, ~b!, and~c!, respectively. Field amplitude and positio
variables are normalized as defined in the text.
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frequency always decay through the FWM parametric in
action. All the predictions based on the analysis of spatia
localized stationary solutions and their invariant surfa
have been confirmed by direct numerical simulations.
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